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Abstract 

 

 

The threat of attacks using chemical, biological, radiological and nuclear (CBRN) 

material continues to garner widespread international attention.  Despite advances in 

CBRN protection technologies, many areas remain vulnerable.  Bioterrorism, 

particularly, is an area of concern as potential genetically engineered pathogens, coupled 

with recognized biological warfare agents, could cause economic, physical, and 

psychological distress.  In the future, inexpensive natural passive collection 

methodologies may find application in complementing state of the art technologies, 

establishing contamination boundaries, and providing post incident historical data.  The 

purpose of this research was to determine if spider webs could be used as natural passive 

bioaerosol collectors.  Spider webs were suitable collectors of aerosolized 

microorganisms in different locations and under different environmental conditions.  The 

webs collected both bacteria and fungi. Microbial growth recovered from the silk fibrils 

seemed to reflect background species.  Multiple environmental factors impacted this 

study; however, solar radiation was considered the most influential factor.  In areas where 

solar radiation was assumed highest, the number colony density decreased; however, the 

variations were not considered statistically different.  Spider webs’ ubiquitous nature 

makes them a suitable proxy, not only in the detection of possible pathogens, but possibly 

in the collection of chemical and radioactive fallout.         
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THE USE OF SPIDER WEBS AS PASSIVE BIOAEROSOL COLLECTORS 

 

I.   Introduction: 

 

1.1   Background 

Biological weapons have been a concern of our leaders for decades.  Shortly after 

his inauguration, President Nixon declared that the United States unilaterally renounced 

first use of lethal or incapacitating chemical agents and unconditionally renounced all 

methods of biological warfare (BW).  After the announcement, the U.S. involvement with 

biological weapons was confined to research on strictly defined measures of defense, 

such as immunization.  In 1972, the U.S. and the Union of Soviet Socialist Republics 

(USSR) agreed in principle to a document banning the development and use of biological 

weapons.  Under the terms of the agreement, the parties agreed not to develop, produce, 

stockpile, or acquire biological agents or toxins of types and in quantities that have no 

justification for prophylactic and other peaceful purposes [49].   

The USSR exponentially expanded their offensive bioweapons program under the 

cloak of this treaty [1].  In his book Biohazard, Russian defector and senior scientist Ken 

Alibek provides chilling details of the USSR's advanced biological weaponry.  Many 

pathogens thought too unstable to weaponize were weaponized and sophisticated delivery 

platforms placed every corner of the world within striking distance [1].  During the 

emergence of Russia in the 1990s, it is suspected that many BW weapon secrets were 

sold to rogue states by out of work and disgruntled Russian scientists.  Other weapons 
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may have been secretly transferred to secure locations within Europe, Asia, and the 

Middle East to avoid scrutiny and accountability.  The final destination or disposition of 

this massive weapon stockpile remains a mystery.   

On September 11, 2001, attacks on the World Trade Center in New York City, 

The Pentagon in Washington D.C., and Somerset County Pennsylvania launched the U.S. 

into a new asymmetrical global war on terrorism (GWT).  The level of sophistication 

demonstrated by Al Qaeda during the attacks and their devastating consequences 

highlighted several vulnerabilities.  First, foreign terrorists had infiltrated the U.S. and for 

years had observed, trained, and planned some of their actions from within our borders.  

Second, intelligence gathering and information management systems had deteriorated 

over the years.  Lastly, detection techniques for CBRN threats were not adequate to 

protect the nation from future threats.  The lack of accountability of soviet BW agents, 

the U.S. evident vulnerabilities to CBRN threats and the advent of global terrorism make 

the development of inexpensive and innovative BW detection techniques absolutely 

necessary.  

 

1.2   Research Objective 

This project addressed the feasibility of inexpensive passive collection techniques 

for augmenting state of the art monitoring initiatives, the possible use of spider webs as 

passive collectors of bioaerosols regardless of location, e.g. rural, urban, or forested.  The 

ultimate objective was to determine if microbes, regardless of species, could be recovered 

from spider webs.  Pathogenic species described in the Centers for Disease Control and 

Prevention (CDC) select agent list, a list of 38 biological agents and toxins that have the 
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potential to pose a severe threat to public health and safety [50,55], are the eventual target 

population of this project.  However, this research was limited to microorganisms present 

in bioaerosols in areas near Wright-Patterson Air Force Base, not select agents or any of 

their surrogates.  Positive identification and classification of the observed species was 

beyond the scope of this initial study.    

 

1.3   Motivation    

 

Interest in passive detection methods originated from shortcomings in the 

BioWatch program.  In July, 2008 the Government Accountability Office (GAO) 

reported that, although significant advances had been made in the Department of 

Homeland Defense (DHS) next generation of BW detectors, they may not be ready for 

initial deployment until 2010 [21].  Operational and manufacturing costs may restrict the 

initial acquisition of enhanced detectors to 100 [21].  This limited number of detectors 

may not be sufficient to effectively protect even one large U.S. city.  Spider webs may 

serve as additional sample collection mechanisms in areas not covered under the DHS 

BioWatch program, to help determine and define affected boundaries in the event of an 

attack, or, to provide confirmatory data after a release is detected in protected areas.  The 

spider webs’ ubiquitous nature, strong collection properties, and rather inexpensive 

analytical requirements make them a practical proxy for BioWatch sensors.  

 

1.4   Previous Work:   

 

It appears that the objective of this experiment has not been explored before, that 

is, the use spider silks to collect airborne microorganisms.  In experiments conducted in 

New South Wales, Australia, spider webs were used to determine, via atomic absorption 
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spectroscopy and ion chromatography, the lead and zinc pollution created by vehicular 

traffic [20].  Researchers concluded that the collection capacity of the spider webs did not 

degrade with time, i.e. old silks continued to collect ions, and the collection capabilities 

of silks were comparable to other methodologies [20].  In Lucknow, China, researchers 

used spider webs to determine regional flora by analyzing pollen deposition on spider 

webs [2].  Researchers in this study statistically compared the pollen concentration 

recovered from silks with results obtained using other volumetric techniques and found 

that there was not a statistical difference between the methods [2].  Consultation with 

multiple subject matter experts on spiders and spider webs revealed no additional work 

using spider webs as passive natural collectors.   

 

1.5   Methodology  

The objective was binary in nature; can microorganisms attach to spider webs, 

and, can they be recovered?  In the previous experiments where spider webs were used as 

collection mechanisms, the targeted population was abiotic.  In this study, the destructive 

analytical methods from the previous studies could not be used as our target populations, 

microorganisms, are susceptible to chemical and heat treatments.  Microbial culture 

offered a solid scientific approach to satisfy the research objective of determining if 

microorganisms attached to spider webs.  Culture techniques, proven versatility in the 

study of a wide variety of microorganisms, made them an obvious choice for this initial 

study.  Two general agar-based growth mediums; Nutrient Agar (NA) and Sabouraud 

Dextrose Agar (SDA), each addressing microorganisms of interest, were used.  We used 

microscopy cover glass slides as the silk collection apparatus.  The webs’ surface tension 
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allowed undisturbed attachment to the cover glass slide and immediate deposition onto 

one of the growth mediums.  After growth was visible, Gram stains, an empirical method 

of differentiating bacterial species based on the chemical and physical properties of the 

cell walls, were used to classify the populations.  Limited statistical comparison and 

analysis was done to determine the possible impact of seasonal variations in webs 

collection properties and a possible saturation point.    

1.6   Assumptions and Limitations  

 

Sample collection was done under normal environmental conditions in four 

locations near Wright-Patterson Air Base, OH.  A collection scenario was used similar to 

that in which a first responder would attempt to collect spider webs for analysis after an 

attack or during periodic monitoring.  The attached particulates and microorganisms were 

assumed to be unaffected by interactions with the web matrix, as indicated by Hose et al. 

[20].  Bacteria concentrations in air are known to be around 10
6
 cells/m

3 
with fungi 

concentration being approximately one order of magnitude less.  Background 

contamination in samples was assumed to be effectively reduced by minimizing media 

exposure time to ambient conditions.  The agar-based growth mediums were not exposed 

to ambient conditions for more than five seconds during sampling.  Despite this small 

exposure, the level of background contamination or background cross-contamination on 

the microscopy slide could not be statistically defined.  The microscopy slides used for 

collection offered a uniform counting area where growth could be observed using light 

microscopy.  Any growth observed underneath the slide was attributed to microorganisms 

present on the web and no background contamination was assumed.  Also, oxygen 
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supply, necessary for aerobic growth, underneath the slide was assumed to be ample 

throughout the entire observation period.  Again, the exact oxygen availability under the 

slide, or, its uniformity and distribution across the area was not measured.  The 

differences in oxygen availability may have influenced the observed microbial speciation.  

1.7   Significance of Results 

 

The findings of this experiment should impact areas of counterterrorism, 

homeland defense, and possibly forensic investigations.  The DHS BioWatch program is 

costly and is presently deployed only in large metropolitan areas and national high value 

targets [43].  This research demonstrated that passive natural collectors may be a viable 

proxy for, or supplement to, expensive detection technologies.  Spider webs could be 

used to randomly sample several areas at a significantly reduced cost.  Also, the process 

may serve to confirm positive results from the more sophisticated BioWatch sensors.  

Since sensors are deployed in fixed locations, spider webs could be used to determine 

contaminated boundaries and direction vectors.  They may also serve to cover 

geographical gaps inherent under the BioWatch deployment guidelines.  This experiment 

is a first step in what could be a long examination of the feasibility of utilizing spider 

webs and other natural media as passive collection mechanisms.  Culture techniques 

revealed a wide range of microbial growth.  The use of spider webs as passive collectors 

can now be expanded by employing more sophisticated techniques to produce reliable 

quantitative and qualitative results.  The approach may also find applications in the 

detection of chemical agents (CA) and radioactive fallout as well as other intelligence 

gathering initiatives.    
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II.   Literature Review 

 

2.1   Introduction   

 

          The threat of a biological attack has risen with the expansion and power projection 

of global terrorism.  In 2004, the Homeland Security Presidential Directive 10 (HSPD-

10) addressed several concerns regarding biological weapons and the danger they 

represent [3].  The CDC’s select agent list focused post 9-11 research objectives on some 

of the most lethal pathogens that could cause severe damage to people, plants, and 

animals.  The CDC rigorously regulates the use of these select agents through the 

National Select Agent Registry Program [50,55].  Despite government oversight, 

accidents have occurred that undermine the regulations and guidelines established by 

CDC [22].  Bacillus anthracis, causative agent for anthrax, has remained a top research 

priority after letters containing powdered anthrax were delivered to Senators Thomas 

Daschle (D–SD) and Patrick Leahy (D–VT) in the fall of 2001.  The development of 

additional detection capabilities will enhance the United States’ ability to protect its 

citizens against the evolving BW threat [3].   

Two types of detection initiatives must be developed; a clinical and a field 

detection capability [38].  A clinical detection capability requires alert physicians and 

proper information exchange to identify biological warfare (BW) event [38].  O’Toole, in 

her testimony to the U.S. House of Representatives stated that “A covert bioterrorist at-

tack would likely come to attention gradually, as doctors became aware of an 

accumulation of inexplicable deaths and illnesses among previously healthy people.”  

However, many hospitals are unaware of federal and state reporting procedures when a 
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BW attack is suspected [38].  Detection and positive identification remain the best 

alternative to minimize casualties during a BW event.  The Science and Technology 

(S&T) division of DHS has made great advancements in developing the next generation 

of biological agents detectors; however, several additional vulnerabilities must be 

addressed to cope with future threats [21].  Gaps in the U.S. monitoring grid, coupled 

with large unprotected populated areas around the nation, present easy targets to terrorists 

[43].  Improving existing detection technologies, as well as developing complimentary 

inexpensive detection and collection methodologies, must be a priority in future 

initiatives.     

2.2   Current Detection Technologies  

 

Biowarfare detection technologies have increased in numbers and evolved 

significantly over the years.  With the increase in recent threats, the need for detection 

technologies that are accessible, cost effective, and reliable is paramount [21].  

Historically, federal agencies independently dealt with the threat of BW.  However, new 

initiatives are driving research and development of newer technologies as a joint effort 

directed by the DHS.  On May 2003, the Department of Health and Human Services 

(HHS) announced the allocation of $1.4 billion for federally sponsored bioterrorism 

cooperative agreements [21].  DHS’ next generation of BW detectors will have the 

capacity of collecting, quantifying biomass, in-situ identification, and rapid information 

dissemination [4].  Legacy technologies could remain in use after the deployment of new 

detectors and may influence their capabilities [4].  Legacy technologies include the 
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Biological Aerosol Sentry and Information System (BASIS) and the Biological Integrated 

Detection System (BIDS) among others.    

BASIS is a portable sampling unit, developed by a joint endeavor between Los 

Alamos National Laboratories and Lawrence Livermore National Laboratories, capable 

of detecting and identifying airborne biological incidents.  Designed for indoor or 

outdoor use, BASIS was successfully tested with live microbes inside a sealed chamber at 

the U.S. Army’s Dugway Proving Ground in 2001 [4,56].  It has also being successfully 

deployed during large sporting and political events [4,56].  The system operates by 

suctioning air into the unit and segregating samples using filters of different sizes which 

are later analyzed using polymerase chain reaction (PCR) for pathogen DNA signatures.  

It can accurately estimate exposure levels, critical in facilitating a proper response [4].  

The entire process from sample collection to identification typically requires between 8 to 

10 hours [56].   

In contrast to BASIS; BIDS is a mobile detection platform capable of detecting 

pathogens in forward locations in support of U.S. Army combat operations.  BIDS uses 

the Joint Biological Point Detection System (JBPDS) as detection mechanism, Fig. 1a, 

mounted on a M1152 High Mobility Multipurpose Wheeled Vehicle (HMMWV) Fig. 1b 

[57, 58].  The JBPDS provides detection and identification of airborne biological agents 

at very low levels, initiates warning systems, and communicates threat information within 

15 minutes of detection [58].  When the system detects microorganism of a suspicious 

nature the collector activates a system that samples hundreds of liters of air per minute.  

This action significantly increases the number of agents that could be identified by BIDS 

[58].   
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Figure 1.  (a)  Joint Biological Point Detection; (b) Mobile BIDS unit [57] 

 

The before mentioned legacy technologies contributed components to the DHS’ new BW 

detectors.  Future financial incentives may favor the development of newer and better 

collection and identification instruments; however, the use of legacy technologies like 

BIDS and BASIS are expected to remain critical for many years.     

 

2.3   Department of Homeland Defense BioWatch Program 

 

      The attacks of 9-11 triggered national levels of distress, anxiety, and helplessness 

not seen since the attack on Pearl Harbor.  As part of the federal protection initiatives, the 

DHS was created and charged with three primary responsibilities; (1) preventing terrorist 

attacks in the US, (2) reducing vulnerabilities to terrorism, (3) minimizing the damage 

from potential attacks and natural disasters [4].  Since its creation, the DHS has invested 

significant funds on research and development projects targeting bioterrorism [31].  The 

GAO reported in July 2008 that DHS has made significant progress on the establishment 

of the National Biosurveillance Integration Center (NBIC).  This center is intended to 

streamline the information gathering and sharing among federal agencies regarding 

biological agents [21].  However, the BioWatch program, which is expected to deploy 

detectors to collect, analyze, and identify select agents, continues to suffer setbacks [21].    

a b 



11 

 

DHS’s office of the inspector general (OIG) identified BioWatch’s 

responsibilities as; (1) providing early warning against biological attacks, (2) assist in 

establishing forensic evidence on the source, nature and extent of biological attacks, and 

(3) determine the preliminary spatial distribution of biological contamination [44].  Three 

different federal agencies have key roles in BioWatch operations; (1) sampling- 

conducted by the Environmental Protection Agency (EPA), (2) analysis- conducted by 

CDC designated laboratories, and (3) response- conducted by the Federal Bureau of 

Investigation (FBI) [43].  Shea and Lister’s document highlighted several controversial 

points within the program.  First, the program’s current operational area is predominantly 

large cities and high value targets, e.g. national labs.  The GAO reported in July 2008, 

that BioWatch detectors are only deployed in 30 locations across the U.S. [21].  To an 

extent, this first point neglects protection for smaller cities and rural areas.  Due to the 

secrecy of the program, the selection parameters for coverage are not readily available, 

creating uncertainty as to the surveillance criteria.  Second, since EPA is in charge of 

sample collection, the EPA collocated the BioWatch detectors with the agency’s 

pollution monitors [32,43].  The EPA interest, pollution, may not correlate with the 

interest of DHS, bioterrorism.  Third, there are gaps within the monitoring area.  Each 

sensor’s operational cost is approximately $41,000 per year with an acquisition cost of 

approximately $90,000 per unit [21].  The high cost associated with the detectors may 

restrict the initial acquisition to 100 enhanced detectors [21].  This limited number may 

not be sufficient to protect a large city and will leave the majority of the nation vulnerable 

to BW attacks.   



12 

 

     2.3.1   Description of BioWatch Sensor Network. 

The HSPD-10 emphasized the BioWatch sensor network as one of the greatest 

initiatives of the federal government against bioterrorism [3].  Current BioWatch 

initiatives feature elements of the BASIS and BIDS technologies while using 

laboratories, part of the federal laboratory response network (LRN), for genetic analysis 

and identification.  The detectors collect bioaerosol samples through a sophisticated set of 

filters that rotate every hour [43].  Filter retrieval occurs every 24 hours creating concerns 

pertaining chain of custody and possible cross-contamination during transportation 

[43,44].  LRN laboratories use polymerase chain reaction (PCR) to positively identify 

pathogens; however, toxins and viral pathogens may be beyond the detectors limit of 

detection [6].  The analysis process takes between 10 to 34 hours [21].  On Feb 12, 2002, 

a sample collected at an airport near Salt Lake City, Utah indicated a positive result on 

more than one single-strand DNA test [40].  Upon notification, airport officials decided 

to wait for confirmatory tests before implementing a costly response plan [40].  The 

confirmatory test, which is expected to be a requirement in future scenarios, revealed a 

cross-reacting non-pathogenic organism [40].  Questions regarding the reliability of 

BioWatch detectors ensued following this false positive.  DHS’ next generation of 

detectors will incorporate the Autonomous Pathogen Detection System (APDS) 

developed by Lawrence Livermore National Laboratory (LLNL) [6].  APDS uses 

immunoassays and PCR analysis to conduct in situ tests on bioaerosols samples without 

human involvement, therefore removing chain of custody concerns [6,19].  These 

detectors are expected to be fully deployed by 2013 [21].  Cost will continue to be the 

limiting factor for the effective deployment of BioWatch sensors.  JASON, a scientific 
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advisory group, estimates that effective nationwide coverage would cost $10–15 billion, 

which would be a significant expansion over BioWatch's current $85 million annual 

budget [21].  Despite extensive monetary investments and the use of the latest 

technologies false positives still may continue to occur, coverage gaps may be extensive, 

and sensor emplacement may be inadequate.  The need for inexpensive detection and 

collection technologies to provide protection for rural areas, as well as confirmatory tests 

in protected areas, may find answers in unorthodox collection mechanisms.   

2.4   Spider and Spider Webs Characteristics  

 

The extraordinary properties of spider silks have marveled engineers and scientist 

for years.  Spider silks, despite their slender surface and size, have tensile strength akin to 

some of the strongest material developed in modern laboratories, Table 1. 

 
Table 1.  Comparison of Mechanical Properties of Spider Silks [26] 

Material 
Strength  
(N m⁻²) 

Elongation  
(%)  

Breaking Energy 
(J Kg⁻¹)   

Dragline silk 4.0 x 10⁹ 35 4.0 x 10⁵   
Minor Ampullate Silk 1.0 x 10⁹ 5 3.0 x 10⁴   

Flagelliform Silk 1.0 x 10⁹ > 200 4.0 x 10⁵   
Tubuliform 1.0 x 10⁹ 20 1.0 x 10⁵   
Acinoform 0.7 x 10⁹ 80 6.0 x 10⁹   

Kevlar 4.0 x 10⁹ 5 3.0 x 10⁴   
Rubber 1.0 x 10⁶ 600 8.0 x 10⁴   
Tendon 1.0 x 10⁶ 5 5.0 x 10³   

 

The interest in spider silks has been to improve structural construction designs 

and to develop lighter and stronger fibers.  With recent advances in technology, scientists 

were able to characterize the chemical composition of numerous spider silks.  The major 
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constituents of silks are proteins, which are synthesized in specialized glands and are of 

high molecular weight. 

There are two main categories of spider webs, cribellar and escribellar (viscous 

capture threads) [41].  The cribellar spiders possibly form the oldest species of arachnids 

currently in existence [15].  These spiders have an organ known as the cribellum, Fig. 2 

that functions as a comb [48].   

 

 
                                                                                               

Figure 2.  Cribellum Organ [59] 

 

As the spider passes the fibrils through the cribellum the combing process also imparts 

electric charges to the thread which makes the puffs repel each other while maintaining 

structural integrity [48].  These fibrils later serve as a trap that can easily entangle small 

prey and particulates without the need of adhesive properties [36].  Thread capturing 

capability is determined by the number of fibrils that form the thread and is modified by 

the dimensions of puffs and the manner in which the spider geometrically manufactures 

the thread [15].  There are two types of cribellate webs; noded and non-noded.  These 

webs have distinctive adhesive properties dictated by the presence or absence of the 

nodes [15].  Hawthorn and Opell demonstrated that the adhesive properties of non-noded, 

Fig. 3(b) web remains constant during different periods of relative humidity as its 

adhesive properties are dictated by Van der Waals forces [15].  Noded silks, Fig. 3(c) 
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employ hygroscopic forces as their adhesive mechanism and are significantly influenced 

by relative humidity [15].   

 

 
 

Figure 3.  (a) Cribellar thread of Hyptiotes cavatus; (b) Cylindrical                                                       

Cribellar Fibrils of Hypochilus Pococki;(c) Noded Fibrils of                                        

Hypotiotes Cavatus [15] 

 

At low relative humidity both, type of silks have comparable adhesive properties with 

Van der Waals forces dominating the adhesive mechanism [15].  However, as the relative 

humidity increases nodded cribellate webs have stronger adhesive properties due to an 

increase in hygroscopic forces [15].    

      The escribellar orb web is spun from two different glands, flagelliform and 

aggregate glands, in the escribellate spider.  As the spider weaves the web the aggregate 

glands coat the fibers with a complex aqueous solution, composed of glycoprotein, that 

later develop into hydrophylic droplets which exhibit strong adhesive properties [35].     

The adhesive properties of viscous capture threads, Fig. 4, are superior to that of cribellar, 

noded and non-noded.  Viscous capture threads on average achieve 13 times more 

adhesion than cribellar threads [35].  The wet viscous capture thread of the ecribellate orb 

can also extend several times its original length while dry cribellate silks are far less 

elastic [48].  The protein composition of spider webs is affected by the animal’s diet with 
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extensive variations possible [9].  The process of creating a new web consumes many 

critical compounds essential for the spider’s survival [18].     

 

 
 

              Figure 4.  Viscous Captured Threads [35] 

 

To replenish lost metabolic nutrients during silk manufacturing, spiders consumed their 

old silks and captured prey daily [9,18].  Craig et al., in an experiment in 2000, showed 

how extensive silk protein composition varies with changes in amount and insect species 

fed to spiders during a controlled experiment [9].  Vollrath et al., in a separate 

experiment, showed that nutrient depletion could affect silk mechanical properties [9].  

There is also evidence that spiders may alter their web’s composition based on their 

physical surroundings requirements [9,18].  A silk’s amino acid composition may be use 

to determine insect populations in an area as well as possible silk mechanical properties 

[9].  Higgins et al., noted that dietary and environmental deviations affect the webs 

adhesive properties and consequently its capturing capability [18].  Webs should collect 

microorganisms present in bioaerosols despite variations in silk composition as a 

consequence of the small size and high concentrations of microorganisms.  

2.5   Bioaerosol Dispersion 

 

     Microbial airborne movement has gained wide spread attention with the 

occurrence of global pandemics and the advent of global terrorism.  The atmosphere is 
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filled with a myriad of bacteria and fungi species able to survive despite extreme 

temperatures, intense solar radiation, and a nutrient depleted environment; all capable of 

inactivating cells [13].  Airborne cells are also susceptible to other environmental factors 

such as relative humidity (RH), temperature, and pollution.  The aerial dispersion of 

microorganisms causes annual losses, ranging in the billions of dollars, in agricultural 

and livestock industries [27].  Spores particularly are highly resistant forms of 

microorganism that are capable of remaining in the atmosphere for an extended period of 

time [2,7].  The speciation of bioaerosols is highly variable and it is influenced by type of 

microorganism, particle composition of air, and environmental gasses present in the air 

[28].  Seasonal temperatures influence the viability of bioaerosols with Gram-negative 

bacteria prevalent during warmer temperatures [47].  The size of bioaerosols ranges from 

1 μm to 100 μm and microorganisms can exist as stand-alone entities or could be present 

in suspended abiotic particulates [29].   

The boundary layer, located approximately 0.1 kilometers above a surface, 

probably contains the highest population of airborne microbes and is responsible for the 

majority of microbial dispersion [29].  Recently, scientists coined the term long-distance 

dispersal (LDD) to describe microbial dispersion.  There are two types of microbial 

dispersion patterns that command attention; (1) single step movement, airborne 

microorganism move to one area, settle, and replicate, and (2) range expansions, the slow 

gradual atmospheric movement through a region [7].  Single step movement is extremely 

rare and difficult to predict as its dynamics require abnormal meteorological events akin 

to “el Niño.”  Microbial range expansion is relatively predictable and can spread though 

air, water, ground, or commercial shipments [7].  The movement of bioaerosols is 
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affected by multiple forces such as diffusion, inactivation, and deposition rates [29].  

Bioaerosols diffusion is strongly correlated to airflow and atmospheric turbulence [29].  

Without atmospheric turbulence, bioaerosols follow a constant stream downwind, not 

Brownian motion [29].  Physical structures also impact diffusion by altering airflows and, 

consequently, movement vectors.  Deposition occurs via multiple factors such as, 

gravitational settling, downward diffusion, rain deposition, and surface impaction, among 

others [29].  Modeling accurate microbial dispersion faces extensive limitations despite 

technological advancement.  The high variability in speciation and the microorganisms’ 

proven susceptibility to environmental factors create a highly complex system to model 

[24].  The complicated movement patterns, inactivation factors, and variable deposition 

rates make bioaerosols a highly unpredictable field of study.     

2.6   Microbial Sources and Environmental Factors Interactions  

 

Microbial communities in urban and rural bioaerosols have an amalgam of 

unknown source terms.  Linear sources and point sources are the principle contributors of 

microorganisms to bioaerosols [29].  Linear sources follow wave function dispersion 

patterns whereas point sources follow conical dispersion patterns [29].  The process by 

which particulate and microbes are aerosolized is called launching [29].  Aerosolized 

microbes seldom result in severe health effects [47].  Water reclamation and soil tilling 

are some of the sources that are known to launch extensive amounts of microbes into the 

air [34].  Diffusion and atmospheric turbulence determined the distance travelled by 

microorganisms and their ultimate suspended time while environmental factors 

particularly RH, wind velocity (WV), and solar radiation (SR) influence cell viability and 
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concentration [24].  WV has the most pronounced effect on bacteria concentration as it 

impacts bacteria decay rates and may determine deposition rates [34].  The latest 

computer models suffer from large biases due to the inability to properly identify source 

strength terms and the inability of predicting environmental effects on cell viability [42].  

Also, air pollutants present in the atmosphere may have a direct effect on bacteria 

viability [30].  The aforementioned complexities make bioaerosols an interesting field of 

study with direct impact on human health, economic development and national security.       

2.6.1   Bioaerosol Composition near Waste Water Treatment Facilities  

 

      The population expansion of the past 50 years has made water reclamation a 

necessity.  The objective of water reclamation is to remove contaminants present in 

wastewaters by chemically and biologically treating the water until the product is a 

combination of clean water, released to water effluents, and sludge used in agriculture as 

fertilizer.  Due to political and economic constraints, Waste Water Treatment Facilities 

(WWTF) are often located in close proximity to densely populated areas [11].  The 

reclamation process is known to aerosolize bacteria by the bursting of air bubbles created 

through the aeration process [11,42].  When WWTF operations aerosolize 

microorganisms, the distanced travelled by these microorganisms is normally restricted to 

approximately < 250 m downwind from the WWTF aeration tanks [11].  Previous studies 

have proven that there is a significant deviation in the number of enteric bacteria, bacteria 

originating in the intestines of animals and people, colony forming units in areas upwind 

and downwind from aeration tanks [42].  Nighttime seems to be a rich environment in 
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speciation and concentration of microorganisms in areas near a WWTF, with levels 

significantly surpassing those of background amounts [11].   

 
                        Table 2.  Microbial Counts Observed in Samples from the John E. Egan WWTF [42]  

      Counts/m³ of air   

Run no.    SPC TC FC FS 

1 
 

970 28 7 14 
2 

 
2,002 298 130 42 

3 
 

1,911 346 63 21 

4 
 

1,588 133 10 0 

5 
 

1,666 42 21 24 

6   2,068 410 112 24 
 

 

Some of the most common aerosolized bacteria resulting from the aeration process 

include standard plate count (SPC) organisms, total coliforms (TC), fecal coliforms (FC), 

and fecal streptococci (FS), Table 2, [42].  The amount of aerosolized bacteria created by 

the aeration process may vary from facility to facility as a result of divergent aeration 

rates and holding tank sizes [42].   

During a study performed in Chicago, Sawyer et al., determined the concentration 

of the before mentioned microorganisms released by a WWTF during organic waste 

processing operations [42].  The FS and FC reduced concentration were attributed to a 

higher decay rate for these organisms [42].  Fannin et. al., in a similar experiment, 

compared the difference in concentrations of aerosolized enteric bacteria near a WWTF 

during night and day hours prior to the start of operations of a WWTF in the Chicago 

area, Table 3 [11].  Their results clearly indicate the impact of WWTF operation in 

aerosols speciation and it also provides insight as to distances travelled by some of these 

microorganisms.  Areas downwind from the processing tanks are expected to yield higher 
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microorganism concentrations than areas upwind [11].  However, areas in the immediate 

vicinity of aeration tanks should yield a higher microbial concentration and speciation 

than areas downwind from aeration tanks [11].   

 
Table 3.  Aerosols Density of Bacteria near O'Hare Water Reclamation Plant [11] 

  
                                             Density (CFU/m³)           

     
      

Downwind 
(m)         

Microorganisms             Upwind 
 

            < 150    
 

      150-250    
 

            > 250   

    Day Night   Day Night   Day Night   Day Night 

TC 
            

Preoperation 0.21 0.28 
 

0.24 0.27 
 

0.28 0.18 
 

0.22 0.12 

Postoperation 0.22 0.09 
 

6.81 5.17 
 

0.86 0.57 
 

0.4 0.34 

             
FC 

            
Preoperation < 0.04 < 0.06 

 
< 0.03 < .06 

 
< 0.04 < 0.06 

 
< 0.03 < 0.06 

Postoperation 0.01 0.01 
 

1.67 2.09 
 

0.18 0.64 
 

0.29 0.15 

             
FS 

            
Preoperation 0.13 0.88 

 
0.04 0.7 

 
0.14 1 

 
0.06 0.58 

Postoperation 0.04 0.83 
 

0.29 2.07 
 

0.15 1.21 
 

0.48 0.86 

                      
   

In night hours, the concentration of bacteria in aerosols increases at most 

locations within or in the vicinity of a WWTF, table 3, [11].  The increase in bacteria 

concentrations during night hours could be the result of a decrease in the decay rate or 

greater atmospheric stability [11].   

However, LDD and other human activities, such as agriculture and recreational activities, 

may also significantly contribute to the final speciation of bacteria in areas near a WWTF 

[11].  Although, the true concentration of aerosolized bacteria near a WWTF may never 

be determined, due to the complexity of the system, it is undisputable that the aeration 

process is a significant source of aerosolized bacteria. 
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     2.6.2   Microbial Dispersion and Viability in Rural Settings 

 

      The soil tilling process, breeding, and grazing of farm animals in rural settings 

create a highly variable bioaerosols environment.  When farming and breeding activities 

change, the amount of microorganisms present in bioaerosols is proportional to the 

change [27].  Storage of grains and other agricultural products also increases the 

microbial composition of air samples [27].  For example, the storage of hay is known to 

be a significant source of Gram-negative bacteria, fungi, and other metabolites [27].  

Fungi particularly are of interest in rural environments due to the recorded high levels 

present in air samples [27].  Little is known as to the true genera or speciation of 

microbes present in rural areas [27].  It is believed that microorganisms may be 

susceptible to chemicals used in agriculture as many may be capable of deactivating their 

replication mechanisms [30].  The impact of chemical fertilizers, insecticides, and 

fungicides on the ability of bacteria to aerosolize is debatable.  Although the true kill rate 

of chemicals used in agrarian activities is not clearly defined, it is plausible that, given 

the large amount of bacteria present in soil, aerosolization of microorganisms after 

chemical applications should continue to be significant in rural settings.    

     2.6.3   Microbial Dispersion and Viability in Urban Settings 

 

 Diversity and concentration of microbial urban air samples is limited, in contrast 

with rural areas.  The limited number of microbial sources decreases the speciation and 

concentration of microorganisms in urban air samples; however, concentrations can still 

reach 10
6
 cfu/m

3
 orders of magnitude [5,30].  Microorganisms in urban settings could 

have a negative correlation with several airborne pollutants; however, these interactions 
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remain relatively unknown [30].  Studies conducted by Lighthart and colleagues indicate 

that aerosolized microorganisms may be susceptible to the common atmospheric 

pollutants carbon monoxide (CO) and sulfur dioxide (SO2) [46].  Airborne particulates 

may increase cell viability by providing shielding from solar radiation [5,30].                

Comparison between replicate observations and between experiments is difficult 

in urban settings due to the high variability of environmental factors in outdoor 

experiments, difference in speciation in short time intervals, and subjective research 

parameters employed in controlled laboratory experiments [30].  Studies indicate that 

Gram positive cocci far outnumbered Gram negative bacteria of any kind in urban 

bioaerosols [30].  Many significant questions pertaining to microbial speciation, viability, 

and dispersion remain unanswered.  The complexity of the study environment may 

require that future research utilize nucleic acid technologies for microbial identification 

and advanced meteorological monitoring stations to study weather effects on dispersion 

and cell viability.          

2.7   Miscellaneous Environmental Effects on Bioaerosols  

 

In previous sections, several environmental factors were linked to cell viability 

and dispersion.  When multiple factors are considered simultaneously, the resulting 

interactions become extremely complex.  Wind velocity, solar radiation, and precipitation 

are among some of the unpredictable factors that unquestionably influence microbial 

movement, viability, and dispersion [24].  Despite the stress caused by changing 

environmental factors, aerosols continue to be densely populated by viable microbes [34].  

Weather conditions could largely affect deposition patterns of microorganisms as well as 
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their dispersion.  For example, precipitation may accelerate deposition as bioaerosol 

particulate may merge with water droplets and fall to the ground at a faster rate; 

therefore, restricting its dispersion area [29].  Electrostatics also play an important role in 

bioaerosol deposition.  At neutral pH, most bioaerosols tend to have negative surface 

charge [29].   Interactions with positively charged particulates, caused by shifts in 

environmental conditions, may cause coagulation and increase deposition rates of 

bioaerosols [29].    Dry weather conditions may increase microbial dispersion or 

deactivate sensitive bacteria through desiccation [29].  Relative humidity affects Gram 

positive and negative bacteria in opposite ways.  Gram negative bacteria are deactivated 

during periods of high RH whereas Gram positive bacteria thrive under these conditions 

[29].  RH humidity also increases particle size distribution as bacteria tend to coalesce 

with increases in RH [24].     

      Solar radiation (SR) is of particular interest when studying airborne microbes.  

The SR effects are dependent on exposed species, duration of exposure, and radiation 

intensity [46].  The time of the day is directly correlated with cell viability, as 

demonstrated by Federak and Westlake in 1978 [12], and validated by Tong and 

Lighthart in 1997 [46].  Both studies established that bacterial growth is highest in 

samples collected from areas where SR was shielded by physical structures or vegetation 

[46].  Shorter UV wavelengths and ionizing radiation such as X-ray are particularly 

detrimental to cell viability [29].   
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Figure 5.  Solar Radiation Effects on Bacterial Population Survival [46] 

                                                   

The incident radiation on viable cells cause DNA damage in the single strand and double 

strand regions, often resulting in breaks [29].  This inhibits biological activities such as 

replication, transcription and translation [29].  The lethal effects of SR on bacteria are 

evident in Fig. 5.  It is also evident that bacteria concentration is fairly constant at 

different times of the day, Table 4.   

 
Table 4.  Percent Survival of Outdoor Atmospheric Bacteria Exposed to Summer Noontime Solar Radiation 

[46] 

Exposure time 
(Min) 

SR irradiance 
250-1100 nm, kJ m² 

Clear noontime 
airborne bacteria 

(n = 8) 

Cloudy noontime  
airborne bacteria 

(n = 5) 

Midnight airborne 
bacteria 
(n = 8) 

0 0.0 100 ± 0 100 ± 0 100 ± 0 

5 281.8 83.9 ± 9.2 86.1 ± 4.0 79.3 ± 4.7 

15 845.6 74.8 ± 6.8 79.3 ± 9.5 66.8 ± 5.0 

35 1973.0 62.7 ± 16.7 53.4 ± 6.2 43.7 ± 6.4 

75 4227.8 32.9 ± 10.4 33.6 ± 4.7 18.1 ± 4.6 
mean ± standard error of the mean 
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Tong and Lighthart’s study however, did not identify bacteria genus; it counted colony 

forming units (CFU) leaving the genus undefined.  Fierer et al., demonstrated that the 

phylogenetic variability encountered in the same location is extensive, regardless of time 

elapsed between samples [13].  Since Tong and Lighthart were unable to establish a 

phylogentic identification in their study, and Fierer et al. described the large variability 

encountered in samples collected from the same location in 24 hour intervals, it is 

appropriate to infer that while CFUs remained fairly constant, the microbial speciation 

changed.  This significant fact alludes to possible speciation variability in samples 

collected from the same site.  

2.8   Culture Techniques 

 

 Microbial culture is the method normally employed in laboratories to observe and 

quantify microbial growth under controlled conditions.  It finds wide applications in 

forensics and epidemiological research as growth can be further studied for pathogenic 

traits [25].  Since its discovery in the later part of the nineteenth century, culture 

techniques have targeted pure isolates [10].  Culture techniques may underestimate 

speciation because non-culturable cells could be present in an aerosol sample [47].  Tsai 

and Macher noted that, in a base study conducted in 100 large cities across the U.S., 

identification and characterization of cultured bacteria was exceedingly difficult and, 

despite intense analysis, > 50% of cultured bacteria were unidentifiable [47].  Culture 

techniques use a predetermined growth medium and incubation temperatures where a 

targeted microorganism can thrive while other microbial growth is inhibited [10].  Agar is 

a gelatinous colloidal extraction from red algae used in culture media [10].  Agar’s 
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purpose in a culture study is as a solidifying agent of liquid nutrients that permit the 

growth of a targeted microbe [10].  With a combination of meat extracts and the addition 

of chemical agents to a sterilized Petri dish, growth rate and certain behavioral responses 

of pure microbes can be studied [10].  Years of studies in microbiology have expanded 

the culture media available for the study of the conceivable infinite number of species 

present in the environment [10].  Growth media is selected based on the nutrient 

requirements of the microorganisms of interest [10].  Heterotrophic microorganisms, 

dependent upon pre-formed organic matter as food source, often require complex 

nutrients such as peptones and meat extracts while autotrophic microorganisms, capable 

of growing strictly on inorganic material, often require synthetic media [10].  Several 

media permit the growth of complex communities.  Complex communities highlight 

microbial diversity in a study; however, it may obfuscate quantitative analysis [10].  

Standard Plate Count (SPC) is a regulated quantitative method involving agar based 

culture techniques [16,17].  The method often requires several dilutions of a pure sample 

that could be smeared on a media or mixed within the media [16,17].  The inoculated 

media is then placed in an incubator at a predetermined temperature where growth occurs 

[17].  The quantification process can executed by automated equipment or by manually 

counting the colonies formed using a colony counter [16,17].  Surface plate count follows 

similar procedures to SPC with the exception that inoculation is done by smearing the 

organisms atop the growth medium.  An acceptable number of colonies in a plate is 

between 15 to 300 colonies per plate [16,17].  Incubation temperatures could be a 

discriminating factor when using culture techniques as small variation in incubation 

temperatures may encourage or inhibit growth of species present in a microbial 
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community [60].  Microorganisms could be grouped by the temperature range in which 

they grow [60].  For example, psychrophiles are microorganisms that grow at cold 

temperatures while thermophiles are microorganisms that grow at high temperatures.  

The range of temperatures microorganism can tolerate is determined by the enzymatic 

composition of the organisms.  Binary cell division, the reproduction mechanism for 

microorganisms, has an optimum temperature for each species.  Culture techniques will 

continue to find applications in microbiology despite technological advances as their 

accessibility and reduced cost, coupled with acceptable quantitative results, enables 

scientist to study the behavior of microorganisms under multiple environmental 

conditions.    

2.9   Summary  

 

The use of spider silks may provide the means for confirmatory analysis after 

suspected BW attacks.   Silks may also serve as passive collection mechanisms that could 

augment BioWatch detectors in protected areas or they could serve as indigenous 

collectors in unprotected areas.  The shortfalls of the BioWatch program were made clear 

in multiple articles previously cited.  The need to explore inexpensive passive collection 

techniques is paramount.  Whereas BioWatch sensors require the flow of bacteria to pass 

through its location, spider silks’ ubiquitous nature permits collection in a wider area.  

This performance parameter could be used in establishing contamination boundaries.  

The survival of aerosolized microorganisms will result from a combination of 

environmental factors, microorganisms’ speciation, and atmospheric chemical 

composition.  False positives may continue to occur in the future despite technological 
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advances.  Due to the high variability in bioaerosols, false positives could only be 

confirmed with historical data that silks may be able to provide.  Financial constraints 

often require a confirmatory test before a protective response is implemented.  Spider 

silks may be a way of providing an inexpensive confirmatory test while aiding in 

determining contaminated boundaries.  
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III.   Methodology 

 

3.1    Overview  

 

The primary objective of this experiment was to determine if spider webs could 

be use as passive bioaerosol collectors.  The extensive variability of several 

environmental factors, as well as changes in the web’s protein composition as a result of 

dietary behavior requires a sequential approach to conclusively determine the silks’ 

suitability as passive collectors.  For this study a collection methodology that conserved 

spider webs, introduced the webs directly onto growth mediums, and permitted in situ 

light microscopy analysis was developed.  No deviations from the developed sampling 

methodology were necessary at any time.  Gold Seal Cover Glass (GSCG) slides, with a 

surface area of 13.2 cm
2
, were used as silk collection apparatus and two generic agar-

based culture mediums were used for microbial studies.  Webs were collected from four 

separate sampling areas in urban and rural locations.  Each sampling area addressed 

environmental or physical factors of interest that were unique to each location.  Samples 

were collected between August and September 2008 to minimize seasonal variation bias 

and microorganisms were allowed to grow at ambient temperatures inside a safety 

cabinet for a period of five days.   

3.2   Growth Medium 

 

The experiment’s objective required generic growth mediums in which a large 

number of aerosolized microbial species could grow without discrimination.  Agar-based 

culture techniques were used to study microbial growth produced by spider webs’ fibrils 

attached to cover glass (CG) slides.  Agar is an excellent growth medium because it 
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dissolves at high temperatures but solidifies at temperatures of less than 45 
o
C [10].  

Nutrient Agar (NA), Hardy Diagnostics Cat. No: C6461 Lot No: 07115 with an 

expiration date of Feb 2012, was used as a non selective agent because it permits the 

growth of a wide variety of nonfastidious bacteria at a pH of 6.8 ± 0.2 [10].  NA consists 

of peptone, beef extract and agar [53].  The beef extract contains water soluble substances 

including carbohydrates, vitamins, organic nitrogen compounds and salts.  Peptones are 

the principle sources of organic nitrogen, particularly amino acids and long chained 

peptides [53].  Sabouraud’s Dextrose Agar (SDA), Cole-Parmer Instruments Company 

Cat No: 14202-62 Lot No: 07116 with an expiration date of Mar 2012, was used for its 

wide application in mycological analysis [10,54].  Dextrose provide an energy source for 

the growth of fungi species [10].  SDA is highly selective due to a low pH of 5.6 ± 0.2, 

which suppresses bacterial growth [10].  The mediums’ manufacturers established the 

agent’s mass to deionized water (DI) mixing ratios required to prepare a prescribed 

number of Petri dishes.   

 
Table 5.  Mixing Ratios for the Preparation of 25 Petri Dishes of Growth Medium 

 

 

 

 

 

Each prescribed mass, Table 5, was weighted using a digital balance, Sartorius 

Element model ELT 602 with 0.01g deviation.  The DI volumes were measured using a 

500 ml burette, Pyrex
®
 Single Metric Scale, graduated cylinder with 4 ml deviation.  The 

 

Volume 

(ml) 
Mass 

(g) 

Nutrient  

Agar 500 32.5 

Sabouraud's  

Dextrose Agar 500 11.5 
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DI water and agent were poured inside a 1000 ml glass Erlenmeyer flask and manually 

stirred for about 60 seconds.  After mixing, the two Erlenmeyer flasks were sealed with 

aluminum caps to prevent evaporation and contamination during autoclaving.  Once 

sealed, the flasks were placed atop a stainless steel tray and placed inside an autoclave 

oven, Tuttnauer Brinkmann model 3870, with a preset autoclaving temperature of 121 ºC 

and pressure of approximately 15 Bar/ PSI. The autoclaving process lasted for 20 minutes 

at the preset settings.  After autoclaving; the flasks were removed from the oven and 

allowed to cool at ambient temperature for approximately five minutes.  The resulting 

solution was poured into Petri dishes, Fisher scientific size 100* 15 mm, covered and 

allowed to solidify for about ten minutes.  Each Petri dish was immediately transported to 

a sampling site or placed inside a low temperature incubator, Fisher Scientific model 

146E, at a preset temperature of 4 ± 0.1
 o
C for future use.  Growth media were discarded 

if not used within seven days of preparation.  

3.3   Microscopy Slide Sterilization  

  

A sterile collection instrument was required to attribute any observed growth to 

bioaerosol surface deposition on the spider webs.  Previous work involving webs as 

passive natural collectors dealt with abiotic populations and each study used silk 

destructive methods [2,20].  In this study, the conservation of the webs was critical and 

necessary.  Gold seal cover glass (GSCG) slides, 22mm wide and 60mm in length, 

Electron Microscopy Sciences, were used as collection apparatus.  The slides’ surface 

area, 13.2 cm
2
, permitted in situ microscopy observation without altering the slide 

position or disturbing microbial growth.  Each GSCG slide was immersed in 70% 2-
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propanol, General Chemical Corporation, Lot VOC/B/GL, for approximately one minute.  

The alcohol treatment killed bacteria by disrupting membrane diffusion and by 

denaturing proteins [8,61].  Some microorganisms such as endospores and mycobacteria 

are capable of surviving chemical treatments and remain viable [14].  These 

microorganisms could be deactivated by heat treatments [14].  To assure complete 

sterilization, cover slides were autoclaved immediately after being immersed in alcohol.   

The sterilization process started with CG slides being placed inside 100 ml 

beakers, that were previously cleaned with soap and tap water, rinsed with DI water, and, 

lastly, chemically treated with 70% 2-propanol.  The CG slides, beakers, and chemically 

treated aluminum foil were placed on a stainless steel tray and autoclaved.  The 

autoclaving procedure explained in Section 3.2 was also used during slide sterilization.  

Once the autoclaving process was completed, the beakers containing the CG slides were 

covered with the chemically treated and autoclaved aluminum foil which served as a 

shield from the environment.  A test involving ten CG slides was conducted to confirm 

slide sterilization.  After completing the sterilization process previously described sealed 

beakers were moved outside Bldg. 644 for testing.  The aluminum foil was broken with 

sterilized tweezers and one slide was deposited in one of the two growth mediums.  None 

of the test trials showed microbial growth underneath the slide for either medium for a 

period of 30 days.  For transportation, the beakers containing the GSCG slides were 

placed inside a box, 38.5 cm long x 30.5 cm wide x 25.5cm in height, and secured to 

prevent damage to the CG slides.  The beakers remained closed until a silk was selected 

for collection.   
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3.4   Sample Collection 
 

 Spiders could be considered nocturnal animals as the night hours bring periods of 

intense activity.  Spiders often consume their silks every 24 hours to replenish expended 

proteins used during the silk manufacturing process [9,18].  They also rebuild broken 

fibrils damaged by impact with airborne particulate, consume captured prey, or 

completely construct new webs during the night [9].  Tong and Lighthart’s study 

indicated that solar radiation decreased the amount of viable bacteria contained in 

bioaerosols [46].  After several discussions, it was accepted that collection during the 

morning allowed sufficient time for spiders to complete their rebuilding and dietary 

requirements and bioaerosols to deposit on the silk before the intense midday solar 

radiation took effect.  Once a silk was selected for collection, two Petri dishes, one Ea 

NA and  SDA, were removed from a Petri dish holding platform, Fig. 6, and placed on 

top a box along with two beakers containing sterilized CG slides and one Petri dish 

containing one regular microscopy slide for silk characterization, Fig. 7.   

 

 
 

                                 Figure 6.  Petri Dish Holding Platform 

 

Each silk sample was collected by swabbing a sterilized CG slide, held by sterilized 

tweezers, through the silk and immediately depositing the collected fibrils into the agar, 
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Fig. 7.  Five samples for each medium were collected at each location except the parking 

garage sets in which six samples for each medium were collected on both occasions and 

the WWTF 500 meter from the aeration basin in which four samples per medium were 

collected.   

 

 

Figure 7.  Sample Collection at Parking Garage Dayton, Ohio, October 11, 2008 

 

Environmental conditions were monitored during collection using a pocket weather 

meter, Kestrel
®
 model 4500 NV.  After collections, samples were parafilmed in situ and 

placed in the Petri dish holding platform, Fig. 6, for subsequent transport to the 

laboratory.  Once in the laboratory, all samples were placed inside a safety cabinet, Fisher 

Hamilton Inc, with a temperature range of 68.69 ± 0.0779 º F.   

3.5   Sampling Areas 

 

 The spider webs collection capabilities will be influenced by environmental 

conditions and webs’ physical and chemical properties.  The region around Wright-

Patterson Air base was studied to select areas that reflected urban and rural activities, 

including agriculture.  Four areas were ultimately selected; (1) a forested area, (2) a 

midsize urban city with moderate traffic volume, (3) a commercial garden center, and 

finally (4) a waste water treatment facility.  These areas provided a range of locations that 

may be susceptible to agroterrorism and bioterrorism as well as distinctive microbial 
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launching sources.  These areas also had unique physical and environmental 

characteristics that may impact webs collection capabilities.   

     3.5.1.   Siebenthaler’s Garden Center 

 

 Siebenthaler’s Garden Center is located on Beaver Valley Road in the city of 

Beavercreek, in Green County Ohio.  The garden center has a land area of approximately 

450 acres and specializes in shade trees, evergreens, and perennials.  This area was 

selected to study the effects chemicals applied to the plants could have on web’s 

collection capabilities.  Traffic volume is significant within the garden center and on 

adjacent Beaver Valley Rd.  The predominant flora in the sampling area was evergreens 

Fig. 8.    

 

 
 

        Figure 8.  Trail inside Siebenthaler's Garden Center 

 

The webs collected from this site were mainly located on the top of evergreens, Fig. 9 (a) 

and funnel webs located near the base, Fig. 9 (b). 
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Figure 9.  Garden Center Webs 

 

The center does not use fertilizer or any other chemical substance to maintain 

inventory production.  The contact herbicide Round-up, Monsanto Company, is applied 

quarterly to inhibit growth of unwanted weeds.  Roundup’s active ingredient is 

glyphosate, Fig. 10, which acts by inhibiting enzymatic activity involved in the synthesis 

of weed’s amino acids [51].     

 

 
 

Figure 10.  Glyphosate Chemical Structure 

 

Roundup was last applied to the garden center’s inventory roughly two months prior to 

sample collection.  The plants are watered at least six times during the summer months.  

Further watering is not necessary as the garden center is located on top of a large aquifer.    

No deviations from the methodology described in section 3.3 were necessary.  The 

weather conditions during collection were clear with a sky cover, of 0.0, an average 

temperature of 70 
o
F, and relative humidity of 31 %, [52].   Sky cover is defined as the 

expected amount of opaque clouds (in percent) covering the sky.   Sky cover is reported 

in tenths, so that 0.0 indicates a clear sky and 1.0 (or 10/10) indicates a completely 

a b 

http://amsglossary.allenpress.com/glossary/search?id=clear-sky1
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covered sky. Sky cover is a factor of concern since it may shield aerosolized 

microorganisms from the damaging effects of solar radiation.  Three background samples 

were collected by gravity impaction on agar plates.  Background samples were collected 

to obtained insight regarding the bioaerosol composition within the garden center.  A 

similar process was used by Lundholm  in 1986 while studying bioaerosols near a 

WWTF [28]. Petri dishes collecting background samples were exposed to ambient 

conditions for a period of approximately one hour.   

     3.5.2.   AMPCO Parking Garage, Dayton Ohio 

 

 The AMPCO parking garage has eight floors and is located in the middle of the 

city of Dayton, Ohio, adjacent to the residential building Kettering Tower at the 

intersection of Jefferson St. and Third Avenue, Fig. 11.   

 

 

Figure 11.  AMPCO Parking Garage, Dayton Ohio 

 

These samples were expected to provide insight regarding webs’ collection capabilities 

despite increases in pollution levels caused by vehicular traffic and exposure to 

ultraviolet light.  The garage experiences high volume usage from Monday to Friday.  

Usage during the weekend is almost nonexistent.  Samples were collected during 

weekend days at the request of the parking management to avoid interference with 
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normal business operations.  The parking garage was visited on three separate occasions.  

During the first collection, on August 23, 2008, samples were randomly collected and 

silks containing high debris content or any discoloration were consciously avoided.  The 

floors used during the first collection were first, second, fourth, fifth, seventh, and eighth.  

Weather conditions during collection were clear with few visible clouds.  The previous 

24 hours experienced an average temperature of 78 degrees Fahrenheit, a sky cover of 0.0 

and RH of 39% [52].  Three background samples were collected, by gravity impaction, 

from the second, fifth, and eighth floors.   

A second collection was executed on October 11, 2008, following the same floor 

collection plan used during the first visit.  For the second collection, the weather 

conditions for the previous 24 hours were clear with sky cover 0.1, average temperature 

of 67 degree Fahrenheit, and an average RH of 50% [52].  The third visit to the parking 

garage did not involve web collection.  A peculiar variability in the number of colonies 

observed from samples collected at different altitudes motivated a third visit to the 

garage.  To expand on this observation, background samples were collected from all 

floors on October 24, 2008.  The weather conditions for the previous 24 hours were clear 

with a sky cover of 1.0, average temperature of 49 degrees Fahrenheit, and average RH of 

38% [52].  Petri dishes were placed on the north side of the parking garage facing 

Jefferson St. on top of the garage entrance, Fig 11.  Each Petri dish remained exposed to 

ambient conditions for approximately 1 hour.  The samples were collected by gravity 

impaction.  Only the visits in August and early October involved web collection and no 

deviation from the methodology described in Section 3.3 was necessary.     
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     3.5.3.   John Bryan State Park  

 

John Bryan State Park (JBSP) is located in the city of Yellow Springs, in Green 

County, Ohio.  This area was expected to provide insight regarding the effects of SR on 

web’s collection capabilities.  Tree canopies were expected to shield cells deposited on 

the webs from the damaging effects of SR.  If true, this natural shield could cause an 

increase in the number of colonies formed under the slides.  The park has a land area of 

752 acres and the prevalent outdoor activities are hiking, camping, and biking, Fig. 12.   

 

 

               Figure 12.  John Bryan State Park 

 

The tree canopies were dense in the sampling area and debris associated with 

outdoor activities was visible.  The sampling area was located near the main visitor's 

center in a small depression that contained a small creek in addition to foliage.  Samples 

were collected on August 21, 2008.  The weather conditions for the previous 24 hours 

were clear with a sky cover of 0.0, average temperature of 76 degrees Fahrenheit, and 

average RH of 38 % [52].  The collected webs appeared recently woven, and webs 

showing signs of stress, discoloration or high debris content were consciously avoided.  

This site deviated from the collection methodology in that samples were collected in the 
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afternoon instead of morning hours to avoid inclement weather conditions expected in 

upcoming days.  Given the shade provided by trees, these deviations were considered 

negligible.  Aside from the time deviation, the methodology described in Section 3.3 was 

followed.   

     3.5.4    Green County Waste Water Treatment Plant 

 

 The Green County Waste Water Treatment Facility (WWTF) is located on 

Factory Rd. in the city of Beavercreek, Green County, Ohio.  This water reclamation 

facility processes an average of 8.5 million gallons of water per day (MGD) with a peak 

processing average of 20.4 MGD in the summer.  It has a total of seven basins, Fig. 13, 

five 93 ft by 24 ft by 15 ft solid waste disposal (SWD) and two 66 ft by 95 ft by 18 ft 

SWD.  The disinfection processes uses 672 ultraviolet light lamps divided into two 

channels.   

 

 

                                Figure 13.  Green County Waste Water Treatment Facility Processing Tank 

 

Aeration of this facility is done by six blowers that continuously suction ambient 

air and pump it into the processing basins.  Sample collection was conducted on 15 

September 2008, less than 24 hours after the Miami Valley was embattled by remnants of 

hurricane Ike with recorded wind gusts of up to 75 mph.  The previous 24-hours saw 
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heavy rain, intense winds and power outages that interfered with the facilities regular 

operations.  The average temperature was 75 degrees Fahrenheit.  Several areas 

previously identified as collection sites within the facility were inaccessible due to trees 

and branches razed by the winds.  Most of the silks maintained their full structural 

integrity despite the high wind velocities.  Two areas were ultimately selected for 

sampling.  The first area was close to the aeration basins and the second area was 

approximately 500 m downwind from the main aeration basins.  This sampling location 

was expected to yield the highest amount of microbial growth since the water reclamation 

is known to aerosolized a large number of enteric microbes [11,42].  The samples were 

collected on the same day to minimize possible variability in source term composition as 

described by Mancinelli [30].  Samples were collected following the methodology 

described in Section 3.3 without deviations despite persistent winds in the area that in 

occasions reached gust of up to 15 mph.     

3.6   Microbial Growth Quantification 

 

 The experiment response variable for this study was average colony forming units 

per CG slide area.  This response variable and developed collection methodology had no 

precedent in peer-reviewed literature.  Accepted microbial quantification methodologies 

include standard plate counts and flow cytometry among others.  Recently, with advances 

in technology, an enumeration technique using digital camera photos, a chemical dye and 

an electronic counter is simplifying bacteria enumeration [39].  The quantification 

methods previously mentioned work best when dealing with pure cultures.  Pure cultures 

were not expected in this study; in fact, a complex growth indicative of the high 
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speciation variability prevalent in bioaerosols was expected.  The enumeration approach 

minimized disturbance to growing microorganism by avoiding any external contact with 

the CG slides deposited in the growth medium.  Lifting the CG from the media was 

considered but ultimately rejected as the agar interference, silk debris, coupled with  

complex microbial communities would yield unreliable counts using the before 

mentioned quantification methods.  The devised enumeration method counted any 

independent growth formed underneath the CG slides as one colony, regardless of size, 

and attributed the observed growth to microorganisms attached to the collected webs.     

Enumeration was done by using a colony counter, Darkfield Quebec
®
 colony 

counter model 3325, with a 40 watt standard light source that enhanced the resolution of 

the counting surface area.  Each sample was removed daily from the safety cabinet 

around 11:00 ± 3 hours for microscopy analysis and colony quantification.  The microbial 

growth was visually inspected and photographed with a digital camera, Kodak easy share 

DX6440 with four mega pixels with flash setting off.  To avoid double counting errors a 

counting tool using acetate was developed.  A cavity with dimensions of one cm wide by 

four cm long was carved on the acetate paper creating a counting area of four cm
2
.  This 

tool was slid through the top of the Petri dish to restrict the counting area and therefore 

minimizing counting errors.  Samples were reintroduced to the safety cabinet each day 

around 1600 ± 2 hours.  The observation process was repeated for a period of five days 

without deviation.  After observation all samples were sealed with all purpose polyvinyl-

chloride wrap and placed inside a low temperature incubator at 4 ⁰C. 
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3.7   Microscopy Analysis 

 

 Light microscopy analysis was conducted on every sample throughout the 

observation period.  The analysis was conducted using the Axioskop light microscope, 

Carl Zeiss Microscope division.  Microscopy magnifies images in two steps.  First the 

objective produces a magnified image of the object in the image plane and secondly the 

eyepiece magnifies the image produced by the objective [23].  Each sample was analyzed 

in situ by placing the Petri dish atop the microscope stage and adjusting its distance from 

the objectives and the light source intensity until an adequate visualization of the fibrils 

and microbial growth was obtained.  The Petri dish was manually moved, following the 

fibrils horizontal contour to obtain counts.  Light was projected from the bottom of the 

microscope into the fibril reaching the CG slide through the agar.  The magnifications 

commonly used were 50 X, 200 X, and 400 X.  Identification of the observed growth was 

beyond the scope of this experiment.   

Attempts were made to classify the observed growth as Gram positive or Gram 

negative to determine if silks discriminated in their collection of biotic microorganisms.  

Gram staining is an empirical procedure that classifies bacteria into two major groups; 

Gram positive and Gram negative.  Differences in their cell walls causes Gram positive 

bacteria, which has a thick layer of peptidoglycan in its cell wall, to stain purple or blue, 

while Gram negative bacteria, which have a thinner content of peptidoglycna to stain red.  

For this purpose the Fisher Scientifics, Fisherbrand Cat. No. 08-0801 Lot 307, Gram 

staining kit was used.  The staining process started with a small droplet of DI water 

deposited on a Fisherbrands slide.  Using a wire loop, sterilized in a cinerator, a small 

colony sample was smeared on the DI water droplet.  The samples were later passed 
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through a flame produced by 95% ethanol to evaporate any liquid residue remaining on 

the slide permanently fixing bacteria samples to the slide.  Digital pictures were cataloged 

after each analysis and subsequent attempts were made to classify the bacteria.       

3.8   Statistical Analysis 
 

Statistical analysis was done using Excel’s data analysis statistical tool packet.  

The statistical analysis of this project was restricted by the number of samples collected 

from each site.  The rejection quotient test, Q test, to determine outliers from each sample 

was used.  Outlier value is a term that was cautiously used in this experiment as the 

interactions of microorganisms present in the bioaerosol and web’s chemical matrix are 

not clearly understood.  Also, the age of the web may influence counts.  If a collected 

web had been exposed for longer or significantly less than the assumed 24 hours it is 

possible that the counts would be affected, therefore causing outliers.  Student t test, two- 

tailed assuming equal variances, with 95 % confidence interval was done for the samples 

from the parking garage to determine the effects of seasonal variations and for the 

WWTF samples to determine the existence of a saturation point.  Box plots were also 

created to compare the spread of the samples and determine if they were correlated.    

3.9   Summary 

 The research objective of this experiment had no precedent in peer-reviewed 

literature.  After trial and error, it was proved that microscopy slides could be used as a 

collection instrument.  The use of CG microscopy slides as silk collection apparatus 

permitted sterile collection of spider webs with minimal interference from background 

bioaerosols, allowed for in situ microscopy analysis of observed growth, and provided a 
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uniform quantification area.  Quantification of colonies did not follow the normally 

accepted standard plate count or flow cytometry protocols.  Independent colonies 

observed underneath the slides were attributed to the silks while growth outside the slide 

was attributed to background interference.  The selected sampling areas addressed 

research concepts of interest such as, solar radiation effects on viability of 

microorganisms and impact of vehicular traffic on web collection capabilities.   
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IV. Results and Analysis 

4.1   Overview 

 

 Results from four sampling locations suggest that spider webs could be used as 

natural passive bioaerosol collectors.  Spider silks are ubiquitous in locations where 

physical and environmental conditions can affect the dispersion dynamics of bioaerosols 

and the collection properties of spider silks.  The observed mean counts per slide (CPS) 

varied between locations; perhaps indicative of bioaerosol composition, cell viability, 

environmental conditions, or webs collection properties.  The life cycle of spiders 

dictated that samples be collected no later than October 15, 2008.  On account of the 

collection time constraint, only the parking garage was sampled on two separate 

occasions.  The lack of repetitive samples and high variability in field environmental 

conditions limited an adequate statistical comparison between the locations.  

Nevertheless, using the parking garage sample sets, the student t test was used to obtain 

insight pertaining webs' collection capabilities under different seasonal conditions.  The 

student t test was also used to determine a possible web collection saturation point using 

the sample sets from the WWTF.  And finally, a rough site comparison on the recovered 

mean population was done using JBSP as control set.  Results of microbial growth are 

expressed as average CPS (± standard error of the mean).   

 

4.2   Observed Growth 

 

Silks collected from four locations generated bacterial and fungal growth.  In this 

study, 72 hours of growth revealed what was considered the most accurate enumeration 

data.  After 72 hours, a white residue for NA samples and a dark discoloration for SDA 
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samples overwhelmed the silks and the area under the slide restricting further accurate 

enumeration.  For bacteria, the garden center set yielded the highest CPS average while 

the summer parking garage set produced the lowest, Table 6.  For fungi, the WWTF sets 

produced the highest CPS average while JBSP set produced the lowest, Table 6.  Bacteria 

CPS averages were higher than fungi in all trials except the summer parking garage and 

WWTF set.  These sets may had been influenced by pollution from increased vehicular 

traffic, dispersion dynamics, and cell desiccation due to higher temperatures.  It is likely 

that these deviations are the result of pollution and dispersion effects since temperature 

conditions among the other sites were comparable.   

                                      Table 6.  Average colony per slide (CPS) after 72-hours of growth 

   

Average 
Count 

72-Hour 
(NA) 

Average 
Count 

72-Hour 
(SDA) 

State 
 Park 11.4 ± 3.5 5.2 ±1.8 

Garage 
(Summer) 6.1 ± 2.5 9.5 ± 2.2 

Garage 
(Fall) 16.1 ± 3.8 14.3 ± 4.0 

Garden  
Center 31.8 ± 9.9 11.8 ± 2.6 

WWTF  18.2 ± 1.9 23.0 ± 2.5 

WWTF 
(500 m) 23.3 ± 2.3 16.5 ± 3.2 

 

When all samples are considered simultaneously, bacteria counts are higher than 

fungi, 17.03 ± 2.44 CPS to 11.7 ± 1.32 CPS respectively, which is representative of the 

higher bacteria concentration in bioaerosols.   
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Fig. 14 & 15 show box plots for each location and growth medium.  Each box plot 

was generated from the independent samples collected from each site.  The CPS spread, 

width of the box, appears consistently higher for fungi species than bacteria.  This may 

represent a more uniform silk collection property for bacteria than fungi.   

  

 

                    Figure 14.  Colony per slide Spread (Bacteria) 

 

 

                         Figure 15.  Colony per slide Spread (Fungi) 

      
The implied collection uniformity could be a direct effect of microorganisms’ 

size, viability, and/or dispersion dynamics favoring bacteria over fungi species.  Stokes 
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law indicates that larger microorganisms, such as fungi spores, would be affected by 

gravitational settling easier than smaller microorganisms such as bacteria [29].  This fact, 

in turn, suggests that bacteria may remain airborne for longer time, favoring webs surface 

deposition.  Microorganisms tend to have a negative charge distribution at neutral pH 

[29].  If bacteria species posses a stronger dipole moment it could also favor interaction 

via van der Walls Forces with spider silks.  The differences in CPS counts between the 

sites should not be strictly considered a silk performance parameter.  These count 

variations could also be influenced by deviations in bioaerosol concentration, 

environmental factors, and human activities in or near the sampling areas.  The 

performance parameters of spider silks regarding the collection of microorganisms could 

not be defined without insight on the true bioaerosol speciation and concentration.      

 

4.3   Site Comparison 

 

 A personal communication with Dr. Brent Opell, October 18, 2008, indicated that 

cribellar spiders are not indigenous to the Ohio Valley.  This information focused this 

study on one type of silks, escribellar.  Assuming that differences in webs’ protein 

composition as a result of deviations in spider diets are negligible, a comparison of the 

webs’ mean collection capacity was possible.  The two-sided student t test, equation 1,  

 

                                                                                (1) 

 

with a 95% confidence interval was used assuming normality, equal variance, and 

independence.  JBSP was selected as control since this location was the least disturbed by 
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launching sources, vehicular traffic, and SR.  For both growth mediums, NA and SDA, 

the same hypothesis test was used 

H0: μ1  =  μ2 

H1:  μ1  ≠  μ2 

Where the mean values represented the average number of colonies per slide recovered at 

each site.  The P-value approach was used to determine the level of significance of the 

null hypothesis.  The P-value is the probability that the test statistic (to) will take the 

observed value given that the null hypothesis is true [33].  The average webs’ collection 

capacity for NA samples appears to be equal, Table 7.  The highest P-values corresponds 

to the parking garage samples, p = 0.25 for the summer set and p = 0.39 for the fall set, 

Table 7.   

Table 7.  Inference on the Mean Colony per slide count for Bacteria Samples using JBSP as Control 

 

Parking 
Garage 
(August) 

Parking 
Garage 

(October) 
Garden  
Center WWTF  

WWTF 
(500 m) 

t statistic 1.239 -0.899 -1.9389 -1.695 -2.376 

Mean 6.167 16.167 31.8 18.2 23.333 

Two-tailed 
Value 2.262 2.262 2.306 2.306 2.447 

Ho Inference 

Do not 
 reject 

H0 

Do not 
reject  

H0 

Do not 
 reject 

H0 

Do not 
 reject 

H0 

Do not 
 reject 

H0 

P value 0.247 0.392 0.088 0.129 0.055 

 

JBSP and the parking garage sets had the lowest CPS averages.  Shielding from SR, by 

tree canopies or floor ceilings, is the only physical commonality between these sites. 

However, reduced exposure to SR is likely not the reason for the reduced number in CPS 

average.  Tree canopies may inhibit microbial dispersion and deposition rates; therefore, 

reducing the amount of microbes available for collection, while pollutants present in 
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Dayton’s atmosphere, as a result of increase traffic, may reduce cell viability.  The 

garden center and the WWTF samples had smaller P-values (correlation with JBSP).  The 

garden center and WWTF(500 m)  P-values, p = 0.08 and p = 0.055 respectively, are close 

to the rejection threshold α = 0.05.  These areas differ from JBSP in that they were 

directly exposed to turbulent diffusion and had strong launching sources in the vicinity.  

Webs’ collection properties seem consistent for bacteria and deviations in CPS average 

are probably the result of cell viability and dispersion dynamics not limitations on the 

webs’ collection properties.  For SDA, Table 8, the P-values were low for all locations 

with two sets, both from the WWTF, falling into the rejection threshold.  These low P-

values suggest that the webs’ mean collection capacity for fungi species is highly variable 

and may not follow bacteria collection dynamics.       

Table 8.  Inference on the Mean Colony per slide Count for SDA Samples using JBSP as Control 

 

Parking 
Garage 
(August) 

Parking 
Garage 

(October) 
Garden  
Center WWTF  

WWTF 
(500 m) 

t statistic -1.469 -1.901 -2.089 -2.539 -3.201 

Mean 9.500 14.333 11.8 13 16.500 

Two-tailed 
Value 2.262 2.262 2.306 2.365 2.365 

Ho 

Inference 

Do not 
 reject 

H0 

Do not 
 reject  

H0 

Do not 
 reject 

H0 

 
Reject 

H0 

 
Reject 

H0 

P value 0.176 0.090 0.070 0.039 0.015 

 

Environmental factors other than RH humidity and SR seemed to have a 

negligible effect on CPS averages.  Additional information pertaining to the bioaerosol 

composition and concentration in the areas studied is needed.  A point that must be 

highlighted is that microbial growth was observed in samples from all sites, which was 
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the primary objective of this research.  This comparison brings to attention the need for 

further research into the possible selectivity of spider webs for bacteria.  The probability 

of type II error (β), or false negative, was considerable given the low number of samples 

collected at each site.   

 

4.4   Relative Humidity 

 

Environmental factors may have affected the collection capacity of the silks.  

Percent RH humidity is a known factor that interacts with glycoproteins contained within 

the silks’ nodes therefore affecting webs’ adhesive properties [35].  Peer-reviewed 

literature regarding this topic focused on nodded cribellar silks not, escribellar.  A private 

communication with Dr. Brent Opell, December 17, 2008, suggested that RH changes 

may affect nodes in escribellar silks in a similar mechanical pathway as nodes in cribellar 

silks are affected.       

 

 

Figure 16.  Impact of RH on number of colonies recovered (Bacteria) 
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Fig. 16 shows a comparison of daily average RH and CPS averages per location 

for bacteria.  Relative humidity data were obtained from the National Weather Service in 

Wilmington, Ohio.  Increases in percent RH appeared to correlate with increases in CPS 

averages except for the JBSP and parking garage summer set.  Other factors, like 

pollution or microbial dispersion, may have had a stronger impact at these locations.   

 

 

Figure 17.  Impact of RH on number of colonies recovered (Fungi) 

 

For fungi species, Fig. 17, increases in RH humidity also seemed to correlate with 

increase in average CPS averages except in JBSP and WWTF 500 m away from the main 

aeration basins.  As previously stated, tree canopies may affect microbial dispersion in 

JBSP.  The WWTF samples may have been influenced by the strong winds, remnants 

from Hurricane Ike, as well as gravitational settling for fungi spores.  The correlation 

between increases in RH and CPS averages seemed consistent with finding by Opell and 

Hendricks involving cribellar silks [35].   
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4.5   Microscopy Study   

 Microscopy studies were done to classify the silks collected as well as observing 

microbial growth induced by silks.  Extensive variations on the silks, which could be 

indicative of different spider species and/or deviations in spider diets, were observed.  

Most collected webs were suspended orb webs with node sizes between 5 and 10 

micrometers.  The variations in node sizes may have had a significant impact on the 

amount of bioaerosol collected by the silks; therefore, the number of CPS generated.  The 

garden center’s funnel webs, Fig. 9 (b) appeared to be cribellar silks Fig. 18, forming 

snares through a large conglomerate of fibrils.   

 

 

                      Figure 18.  Garden Center Funnel Web, magnification 200 X. 

  

Silk samples consistently showed a dark residue following the silk contour after 

deposition on the growth medium, Fig. 19 (a) and Fig. 19 (b).  This residue often seemed 

to be a precursor to microbial growth, but its true composition could not be determined 

Fig 19 (c).    
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Figure 19.  Residue on Webs, magnification 200 X 

 

  For fungi species, the growth was akin to bacteria.  Hyphae initiated on the fibrils and 

formed a mycelium which later spread throughout the growth area Fig. 20. 

 

Figure 20.  Garden Center, magnification 50 X 

 

 Observed microbial growth included cocci, bacilli, and other sporulating bacteria 

while fungi revealed what appeared to be basidiospores, and ascospores Fig. 21.   

 

 

Figure 21.  Example of observed Microbial Growth 

(b) Sample 2 (inside) (a) Sample 1 (500 m) 

Garage 200 X Garden Center 200 X JBSP 200 X 

(c) Garden Center 

Bacteria 
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These observations were done by comparing the shape and appearance of the 

growth with literature descriptions.  The positive identification of these microorganisms 

requires equipment and technical expertise not presently available.  These results 

highlighted the capability of silks to recover a wide variety of microorganisms which 

could possibly lead to the collection of pathogenic species.  The growth could not be 

pinpointed to bioaerosol deposition on the silks or collected particulate.  Microorganisms 

are known to deposit on airborne particulate [11,29].  There were instances where 

particulate was present on the silk and microbial growth appeared to be induced by these 

particulate, and other instances where no microbial growth was visible despite the 

presence of debris.  Silks, with no sign of particulate, also induced microbial growth at 

random.  It is likely that both particulate and bioaerosol deposition on silks induced 

microbial growth.     

 Gram staining, to an extent, confirmed the suitability of silks as passive 

bioaerosol collectors.  The staining revealed what could be classified as Gram positive 

and negative bacteria, Fig. 22.  This point gives credence to the belief that spider webs do 

not discriminate between Gram positive or Gram negative bacteria.         

 

 

Figure 22.  Gram Stains 

 

WWTF (500 m) Samples 4  Garage, Magnification 200X Garage, Magnification 200X 
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Despite evident variations in node sizes, web’s location, i.e. surface vs. suspended, and 

types, all samples collected produced microbial growth.  The growth was not uniform 

across the webs fibrils.  There were instances in which web fibrils did not appear to 

promulgate growth.  This could be the result of zero gravitational settling of 

microorganisms, the presence of non culturable microorganism, parasitic interactions by 

non-culturable microorganisms, or deposition of non viable cells in those regions.   

4.6   Saturation Point and Seasonal Variation    

 

 The sample sets collected from the WWTF addressed web saturation concerns as 

a result of a strong microbial launching source near the silks.  The WWTF sets were 

collected from locations that were about 500 meters apart to offset any possible saturation 

point.  A saturation point is a factor of interest when determining the suitability of spider 

webs as natural passive collectors.  Spider silks to be a viable collector must be able to 

continue to collect aerosolized microorganisms in the presence of strong launching 

sources such as a WWTF.  If the silks are saturated, they have a low limit of collection; 

they may be considered inadequate passive collectors.   For reasons not directly attributed 

to web collection capabilities, the parking garage was visited on two separate occasions, 

one in the summer and one in the fall.  Inadvertently, these sets permitted the study of 

webs’ collection capabilities under different environmental conditions caused by seasonal 

changes.     

      

 WWTF 

 CPS counts do not indicate a web saturation point.  In fact, webs appeared to 

collect a variable number of colony forming microorganisms regardless of the distance 
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from the main aeration basins, Fig. 23.  For both mediums, background samples indicate 

a higher microbial concentration near the aeration basin, Fig. 23.  For bacteria, samples 

collected 500 m from the aeration basin yielded the higher CPS average.  For SDA, 

samples collected near the aeration basin yielded a higher CPS average.  The perception 

is that microorganisms generated by the aeration process rise in an upward movement, 

following a conical dispersion as described by Maier [29].  In the area 500 m away from 

the aeration basin, gravitational settling and Brownian motion may support bacteria 

deposition.  The student t test suggests that these samples have the same population mean 

with p = 0.14 for NA samples and p = 0.43 for fungi samples.   

 

 

Figure 23.  WWTF Average Growth Comparison given a 500 m Standoff Distance between Collection Areas 

 

The difference in P-values is probably representative of bacteria and fungi dispersion 

patterns, as previously explained, not web’s collection characteristics.     

The average growth for samples collected near the aeration basin were 18.2 ± 1.9 (CPS) 

for bacteria and 23.0 ± 2.2 (CPS) for fungi.  Samples collected 500 m away from the 

aeration basins yielded an average growth of 23.3 ± 2.3 (CPS) for bacteria and 16.6 ±2.2 
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(CPS) for fungi.  Although, a saturation point is likely to exist, it cannot be identified 

with present data sets.   

           

Parking Garage 

 

The Fall background samples yielded a significant higher average colony count 

than the summer samples, Fig. 24.  This is likely the consequence of changes in 

bioaerosol population as a result of human activity variations and increases in percent 

RH.   

 

 

Figure 24.  Seasonal Comparison using Parking Garage Samples  

 

In the summer, the lower average count may be the result of possible cell inactivation 

caused by higher temperatures or DNA intrastrand dimerization caused by higher UV 

radiation.  Increases in vehicular traffic, as a result of summer leisure activities in the 

City of Dayton, may had also reduced microbial populations through a number of 

released pollutants.  The student t test suggest that the collected population means are the 

same, with p = 0.053 for bacteria and p = 0.16 for fungi species.  The bacteria samples 
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are almost within the rejection threshold of α = 0.05.  The higher P-value for fungi could 

be indicative of fungi spores resisting the adverse effects of environmental factors as well 

as pollutants better than bacteria in the summer.  The percent RH, which affects the 

hygroscopic glycoproteins in the webs, was higher in the Fall set, 50% compared to 39% 

in the Summer.  Although, the increase in RH may increased the webs collection 

properties, the rise in bioaerosol concentration curtails the possibility of attributing the 

higher CPS average to just enhanced webs’ collection properties.   

4.7   Summary  

 

 Silks collected from all four locations produced microbial growth.  The observed 

growth, as expected, was highly variable.  The student t test suggested that the mean 

collection capability for bacteria is similar while the mean collection capability for fungi 

appeared to be different despite consistent sampling techniques and environmental 

conditions.  This may be the result of different dispersion dynamics as well as bioaerosol 

concentration for each type of microorganisms.  Gram stains showed the presence of both 

type of bacteria and webs did not discriminate in their collection.  Changes in RH seemed 

to be proportional with the observed CPS averages.  Statistical analysis was restricted due 

to the number of replicate samples collected from each location.  In the future, additional 

replicate samples must be collected to define spider webs performance parameters.      
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V. Discussion 

5.1   Research Question 

 

 Can spider webs be used as passive bioaerosol collectors? 

o During this study, spider silks passively collected aerosolized microorganisms 

from four different locations under variable weather conditions.  Fungi and 

bacteria species were recovered from all sampled locations, but webs 

collected higher amounts of bacteria than fungi.  This could be indicative of 

higher bacterial concentrations in bioaerosols, microorganisms dispersion 

dynamics, cell viability, or web collection properties.  The silks appeared to 

collect microorganisms representative of background populations. 

o This research was restricted by the number of replicate samples collected.  

Statistical analysis had a considerable probability of type II (β) error as a 

result of the limited number of samples collected.   

5.2   Impact of Research 

 

o The applications of spider webs as passive collectors are broad.  The minimal cost 

concerning the use of webs as collectors, their ubiquitousness, and ample 

availability may influence future field sampling initiatives.  Spider webs may also 

find applications in combating terrorism and proliferation.  Historical signatures 

left by covert activities of terrorist and proliferants states may be detected and 

traced using spider webs.  Also, webs could be used to determine post incident 

contamination boundaries.  This study was motivated by bioterrorism threats but, 
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webs may also find applications in identifying signatures from chemical warfare 

agents (CWA) and radioactive material. 

5.3   Recommendations 

 

A sequential approach should be developed in order to define silks collection and 

performance parameters.  Research that addresses webs' collection effectiveness, limit of 

collection/detection, and limitations should be a priority.  A two pronged approach should 

be considered in the future; one that focuses on controlled experiments that define 

performance parameters and another that focuses on field sampling and comparisons 

against more sophisticated field sampling methodologies.   

5.4   Suggestions for Future Research  

 

 Spider Webs Suitability as Bioaerosol Collector 

 

o A limit of detection/collection must be defined.  All samples produced 

microbial growth; however, the amount and speciation recovered by the webs 

in relation to the true bioaerosol composition was not determined in this study. 

Field experiments in which signatures (species) and densities recovered by 

spider webs are statistically compared to signatures recovered by more 

sophisticated field sampling technologies, such as Anderson samplers, should 

be conducted.  This comparison would provide insight into webs' collection 

capacity and possible discriminating factors.   

o Environmental factors may influence webs' collection properties.  Relative 

humidity, for example, has been proven to affect silk adhesive properties by 

interacting with glycoproteins present on the webs [35].  Other environmental 
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factors, such as solar radiation and temperature, may also affect physical and 

molecular properties within the silks that could result in variations in adhesive 

capacity.  Controlled experiments should be conducted where adhesive 

properties are correlated to changes in environmental conditions following a 

factorial approach.  The size and concentration of microorganisms present in 

bioaerosols may permit their collection despite variations in environmental 

conditions.  However, these studies may help define webs' performance 

parameters and efficacy as a bioaerosol collector.   

o  Microorganisms must be positively identified to determine possible collection 

biases.  In this study, morphologic comparisons between species observed in 

background samples and species observed in silk samples suggested that webs 

collected bioaerosols in their true composition without discriminating family 

or genera.  The use of flow cytometry, serial dilutions, and polymerase chain 

reaction (PCR) in future studies is highly encouraged.  Flow cytometry could 

help in determining size, phenotype, and complexity of cells present in 

heterogeneous samples.  Serial dilutions could establish quantitative 

parameters while PCR or other molecular analysis could positively identify, at 

a minimum, the genus of the microorganisms.   

o A saturation point should be sought and determined.  In the field, silks' surface 

area may become saturated by the constant deposition of particulates and 

microorganisms as a result of strong launching sources near a sampling area 

or protracted exposure to bioaerosols.  A saturation point may restrict the use 
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of old webs in the absence of newly woven silks or in the presence of strong 

microbial launching sources.  

o Fig. 25 depicts a road map that could guide future qualitative and quantitative 

studies using spider webs as passive bioaerosol collectors.   

 

 
Figure 25.  Example Road Map for Future Research Involving Bioaerosol Collection 

 

 Silks could be collected using an open instrument such as a ring with its outer 

contour covered with double-sided adhesive material.  The instrument could be 

thrust into a silk forcing it to become embedded on to the collection instrument.  

Structural integrity should be unaffected.  Using this collection methodology 

permits the storage of silks for future studies; therefore removing the collection 

time constraint.  A key aspect in any future research is to establish a base of 

comparison.  A base comparison for microorganisms could be obtained by using 

one of a number of commercial bioaerosol samplers.  The use of molecular 

technologies would overcome underestimation constraints inherent in culture 



66 

 

techniques and quantitative procedures such as serial dilutions could provide 

critical insights into the collection capacity of the silks.   

 Spider Webs Suitability as Chemical Agent Collectors.   

 

o This study focused on the collection of aerosolized microorganisms but, 

signatures of chemical agents released in their liquid or gaseous forms may 

also be detected using webs.  Hose et al. showed the suitability of silks as a 

passive collector of chemical pollutants [20].  It is possible that Hose et al.'s 

findings and methodology could be applied when searching for signatures 

generated by chemical warfare agents (CWA).   

o Silks are composed predominantly of proteins.  The proteins present in the 

silks could interact with chemical agents to the extent of forming new 

chemical compounds, dissociating or breaking, or continuous collection while 

maintaining their full chemical, molecular, and structural integrity.  Control 

reactions should be conducted to determine the effects of chemical groups on 

silks and their remaining signatures.   

o If silk preservation is desired the collection methodology defined for 

bioaerosols should be followed.  However, silks may be collected using 

unsterilized media with negligible impact on the analysis.  Silks could be 

analyzed using destructive or non destructive methods.  If an aliquot must be 

prepared silk digestion using nitric acid or hydrofluoric acids had been proven 

effective in the past [2,20].   

o Chemical agent signatures could be identified using spectroscopic or 

chromatographic methods.  Fourier transform infrared (FTIR) spectroscopy, 



67 

 

Gas Chromatography-Mass Spectroscopy (GS-MS), Raman spectroscopy, and 

nuclear magnetic resonance (NMR) are some of the technologies currently 

used when searching for chemical warfare agent signatures.  These 

technologies take advantage of chemical compound properties such as charge, 

spin, and vibrational characteristics.  The chemical properties of the 

compounds of interest must be understood before selecting a technology.       

 

 

Figure 26.  Example Road Map for the Analysis of Chemical Agents 

 

o Fig. 26 depicts a road map that may be used to guide future initiatives involving 

chemical substances.  Spider silks molecular composition will generate signals 

characteristics of their protein matrix.  However, the signature produced by CWA 

should be visible and discernable.  When working with chemical agents, 

signatures of interest are normally generated by P-CH3, P-CH2CH3 bonds.  More 

specifically, methylphosphonic acid, a degradation product of VX and sarin, ethyl 
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methylphosphonic acid, degradation product of VX, and isopropyl 

methylphosphonic acid, a degradation product of sarin.  Chemical compounds 

containing some of these groups could be used as surrogate for the CWA in future 

studies.   

 Radioactive Material 

 

o There are two primary threats involving nuclear material, a nuclear detonation 

and dirty bombs.  A dirty bomb, also known as radiological dispersal device 

(RDD), combines conventional explosives with radioactive material to 

contaminate a region with radioisotopes.  This threat is not expected to cause 

large number of casualties but, the psychological and economic impact, due to 

expensive clean-up, would be severe. During RDD events, silks could find 

limited application in defining contamination boundaries.   

o A nuclear detonation requires weapons grade fissile material primarily 

uranium-235 (
235

U) or plutonium-239 (
239

Pu).  Weapons grade fissile material 

is normally obtained from uranium-238 (U-238).  The fissioning of an atom of 

uranium-235 in a nuclear reactor produces two to three neutrons.  These 

neutrons can be absorbed by uranium-238 to produce plutonium-239 and other 

isotopes Equation 2. 

                                                                (2) 
 

 

o Natural uranium is predominantly composed of U-238 (99.28%) and U-235 

(0.71%).  U-235 is obtained by enriching uranium ore, separating U-235 from 

U-238, based on the isotopes mass differences.  With technological advances 
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the enriching process is becoming more efficient.  Spider webs may find 

limited application in situations when sampling technologies are inaccessible 

or not permitted, i.e. during inspections.  Some isotopes might migrate away 

from enrichment confines and deposit on silks.  Isotopes emit characteristics 

signal at energy channels that have been thoroughly studied.  If an isotope 

associated with U-238 and Th-232 decay chains is detected it could be 

indicative of covert enrichment activities.   

    

 
Figure 27.   Example Road Map for the Analysis of Signatures from Radioactive Material 

 

o Fig. 27 shows a road map that could be used to study the suitability of silks as 

isotope collectors.  Signatures of interest involve alpha (α), beta (β), and gamma 

(γ) decaying isotopes associated with nuclear material.  It is highly recommended 

that silks be analyzed for signatures generated by radioactive fallout present in 
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atmospheric air.  Also, webs may be exposed to radioactive material and analyzed 

for spikes in background signatures or new signatures corresponding to the 

exposed material.  Collection would follow a pattern similar to what was 

previously explained.  High purity germanium (HPGe) detectors and liquid 

scintillation detectors are widely used when working with α, β, and γ signature 

emitters 

5.5   Conclusion 

 

 This proof of concept experiment examined the suitability of spider webs as 

passive bioaerosol collectors.  The high cost of current technologies employed in the 

detection of aerosolized pathogens, their restriction in determining post incident 

contamination boundaries due to their fixed location, and their limitation in providing 

post incidents historical data motivated this research.  Spider webs were considered a 

suitable proxy for these technologies since webs are ubiquitous in most environments and 

geographical settings, their collection is highly inexpensive, and their constant 

regeneration allows the webs to become, in essence, new sampling devices every 24 

hours.  For spider silks to be considered suitable bioaerosol collectors they had to satisfy 

three basic parameters; (1) indiscriminate collection of microorganisms of different 

species and sizes, (2) uninterrupted collection under different environmental conditions, 

and (3) saturation avoidance in the presence of strong launching sources. It is cautiously 

concluded that spider webs satisfied these preconditions.  Quantitative and qualitative 

analysis was not the primary goal of this experiment.  Instead, the desire was to prove if 

silks could collect aerosolized microorganisms and preliminary define some of the webs 
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collection characteristics.  The target population of this study were heterogeneous 

bacteria and fungi communities collected from four locations near Wright Patterson Air 

Force Base; a state park, a waste water treatment facility, a garden center, and a parking 

garage. Current results suggest that silks collected microorganisms without 

discrimination based on species, genera, or sizes.  Variability in the enumeration of 

targeted microorganisms was observed throughout the experiment.  The variability in the 

number of colonies is likely the result of human activities in the vicinity of the sampling 

sites, environmental factors such as solar radiation, and dispersion dynamics of 

aerosolized microorganisms, not web collection properties.  Temporal and climate 

changes may have altered physical and molecular properties of the silks.  After a private 

conversation with subject matter experts, it is concluded that; although temporal and 

climate changes may have altered silks' mechanical and molecular properties, these 

changes should have resulted in negligible impact on the collection of the diminutive 

aerosolized microorganisms.  The existence of a collection saturation point was explored 

using the samples collected from the WWTF.  A saturation point could not be confirmed 

with current results, but it is believed that if it exists, this point is an extreme number of 

particulate and microorganisms that may or may not mask the signature left by a 

pathogen.  A limited number of collected silks generated a large number of colonies.  

This extensive growth could have been the result of aged silks that continued to collect 

bioaerosols after being abandoned.  Opell and Schwend determined that silks retained 

between 70% and 90% of their adhesive properties after aged under laboratory conditions 

for up to three months [36].  It is plausible that, under field conditions, silk also retained 
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their adhesive properties despite aging; therefore, producing a large number of colonies 

and signatures when compared to recently woven silks.  

In the future, additional experiments should contain a base reference in which 

signatures obtained from silks could be statistically compared to other methodologies. 

The principles guiding this experiment should not be limited to the collection of 

bioaerosols.  It should be expanded to areas involving signatures generated by radioactive 

material associated with enrichment activities (alpha, gamma or beta decay isotopes) and 

precursors used by or degradation compounds generated by chemical warfare agents. 

Defining silk collection parameters should be intently pursued in order to establish limits 

of collection/detection and identifying possible limiting factors.  At this initial stage, 

spider webs appear to be adequate bioaerosol collectors.  The present security situation 

faced by the international community requires not only the use of the most advanced 

technologies, but also the use of other inexpensive and unorthodox methods that prove 

adequate in the detection of signatures of interest. 
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Appendix A.   Microbial Variability with Elevation Increases 

 

 The AMPCO parking garage located in the city of Dayton, Ohio revealed a 

peculiar variability in backgrounds samples with changes in elevation.  Background 

samples, as previously stated, were collected by gravitaty impaction.  Petri dishes 

containing Nutrient Agar (NA) and Sabouraud’s Dextrose Agar (SDA) were placed on 

the ledge of the parking garage facing 3
rd

 St. on the second, fifth and eight floors.  It was 

noticed that for both growth mediums the colonies formed decreased with increases in 

elevation.  To further explore this finding, a visit to the parking on October 25, 2008 

focused on background collection.  On this occasion all floors within the parking garage 

were sampled, with the exception of the fifth floor.  This new study validated the original 

observations, Fig. 28 & 29.  It seems that both types of microorganisms reach a point of 

equilibrium between the seventh and eighth floors.  Additional samples at higher altitudes 

are recommended to confirm if microbial concentrations continue to vary with altitude 

variations.      

 

 

Figure 28.  Bacteria Variation in CFU with Elevation Increases 
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Figure 29.  Fungi Variation in CFU with Elevation Increases 

 

This finding may be of interest to government agencies charged with BioWatch sensor 

emplacement.  Bioterrorism planning scenarios often involve the assumption of an 

aerosolized pathogen plume moving into a city.  This scenario often assumes an 

aerosolized release source and that the pathogen movement will be from top to bottom.  

For this reason, sensors are normally deployed at high altitudes.  If instead of an airborne 

release, a surface release occurs, sensors located at high altitudes may miss the signature; 

leaving the city vulnerable to the pathogen and response agencies unaware of the 

incident.  This observation should be further explored to determine if the true microbial 

concentration at different altitudes is statistically different and if it may hinder detection 

and identification.        
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Appendix B.   Daily Growth 

The most prevalent microbial launching sources around the sampling areas were 

believed to be agricultural activities.  A gram of soil is known to contain about 10
10

 

bacteria cells and between 10
4
 to 10

6
 fungi CFUs [29].  Daily microbial growth seemed to 

follow the four steps associated with binary cell division for bacteria.  Immediately after 

deposition on the growth medium there was evidence to suggest a lag phase 

(discoloration and perturbations in the growth medium) followed by exponential growth 

< 24-hours (microorganisms dependant).  After 48-hours the growth seemed to enter a 

stationary phase which for some microorganisms lasted until the completion of the 

observation period of five days, a death phase could not be confirmed.   

Table 9.  Daily Growth (Bacteria) 

 

Average 
Count 

48-Hour 
(CPS) 

Average 
Count 

72-Hour 
(CPS) % Increase 

State 
 Park 8.0 ± 2.4 11.4 ± 3.5 29.8 

Garage 
(Summer) 4.5 ± 2.4 6.1 ± 2.5 26.2 

Garage 
(Fall) 11.5 ± 2.7 16.1 ± 3.8 28.6 

Garden  
Center 19.0 ± 6.2 31.8 ± 9.9 40.3 

WWTF  10.6 ± 1.8 18.2 ± 1.9 41.8 

WWTF 
(500 m) 8.7 ± 0.9 23.3 ± 2.3 62.7 

 
 

Table 9 shows CPS averages for bacteria species.  The daily growth for 24-hours was not 

documented as there were instances where independent colonies could not be identified 

despite the presence of discoloration and perturbations.  The highest increases in CPS 
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were observed in the garden center and WWTF sets.  These areas were expected to yield 

the highest microbial growth as a result of strong microbial launching sources in their 

vicinity.  The percentage increase in CPS seemed consistent among the sampled areas 

except for the WWTF samples collected 500 m away from the aeration basins.  Fungi 

have variable growth rates and, as a group, they are not as capable of rapid growth as 

bacteria [29].           

 

Table 10.  Daily Growth (Fungi) 

 

Average 
Count 

48-Hour 
(CPS) 

Average 
Count 

72-Hour 
(CPS) % Increase 

State 
 Park 5.0 ± 1.5 5.2 ±1.8 3.8  

Garage 
(Summer) 8.5 ± 1.9 9.5 ± 2.2 10.5  

Garage 
(Fall) 10.7 ± 2.6 14.3 ± 4.0 25.6 

Garden  
Center 10.6 ± 3.0 11.8 ± 2.6 10.2  

WWTF  8.8 ± 2.7 23.0 ± 2.5 61.7  

WWTF 
(500 m) 15.5 ± 2.2 16.5 ± 3.2 6.1  

 

 

 In comparison with bacteria samples, fungi samples demonstrated a consistent 

lower CPS.  As mentioned above, this could be the result of the lower concentrations of 

fungi species in the environment or dispersion dynamics.  The percentage increase for 

fungi is significantly lower than bacteria species, Table 10.  This is indicative of the 

fungi’s slower growth rate.  It is believed that several different species were collected 

during this study.  The variations in percentage increase among sampling sites and 

growth mediums is representative of the heterogeneous sampling environment.          
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